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Abstract—In modern cars MEMS gyroscopes and accelerom-
eters provide essential measurements for enhancing the stability
and control. Both types of sensors have significant noise at low
frequencies, limiting the measurement accuracy especially in low
dynamic conditions. In addition, uncompensated accelerometer
tilt causes large bias to acceleration estimates. For gyroscopes,
physical rotation of the sensor can be used to remove the
constant part of the gyro errors and reduce low-frequency noise.
In ground vehicles such rotation exists conveniently in wheels.
When inertial sensors are attached to wheel, both types of
sensors provide information on the rotation, gyroscopes naturally
and accelerometers via specific force measurement. In addition,
as a result of carouseling, accurate wheel heading, roll and
pitch estimation can be estimated with high resolution, and the
result is nearly bias-free. Combining the wheel orientation to
distance traveled via known radius enables classic dead reckoning
mechanization (assuming zero slip) and other vehicle dynamics
monitoring systems (considering wheel slip as unknown to be
solved). In the paper, we provide details of wheel-mounted
inertial system hardware and algorithms and show test results for
several system configurations and applications. We discuss future
system improvements, in particular, system miniaturization and
an energy-harvesting development progress for next-generation
inertial systems.

I. INTRODUCTION

Microelectromechanical systems (MEMS) play essential
role in automotive electronic control systems, providing mea-
surements for tire pressure monitoring, vehicle stability con-
trol, adaptive suspension, rollover protection systems, and
navigation systems [1], [2]. While MEMS gyros and ac-
celerometers are suitable for vehicular applications in terms of
size and cost, noise properties (large bias and significant 1/f
noise) cause problems especially in low dynamic conditions
or when measurements are integrated from angular rates to
angles or from acceleration to velocity and position [3]. Global
Navigation Satellite Systems (GNSS) receivers can be used
to complement these measurements but the availability and
accuracy drops in urban canyons and underground [4]–[6].

Mitigation of MEMS gyro noise is an actively studied
topic, and solutions vary from improving the associated elec-
tronics [7] to using external updates [6], [8] and advanced
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statistical signal processing methods for filtering the gyro noise
while retaining the signal [9]–[11]. However, in the absence of
external updates it is quite impossible to transform a low-cost
MEMS gyro to a high-performance low-noise gyro with signal
processing methods alone. This is due to the fact that the 1/f
noise heavily overlaps with the useful signal frequency bands,
especially when the vehicle dynamics are low. To separate
the problematic noise components (bias, 1/f noise) from the
signal, methods such as indexing and carouseling have been
studied [12]–[18]. Significant improvements in pedestrian dead
reckoning obtained using a foot-mounted rotating inertial
measurement unit (IMU) have been reported [19], although the
test setup was quite complicated form hardware point of view.
In contrast, a dedicated rotating system is not necessary if the
IMU is mounted at the wheel of a land vehicle [20], [21]. This
setup is advantageous as distance traveled can also be deduced
from wheel orientation via known radius. Somewhat similar
approach is taken in foot-mounted INS wherein zero-velocity
update can be applied as measurement whenever foot is on
ground. In wheel this kind of velocity update can be done
continuously.

For the purpose of revealing the potential of wheel-mounted
inertial system, we have designed a wheel-mountable sensor
system PI-WINS (Pacific Inertial Wheel Inertial Navigation
System) that contains MEMS sensors, battery, Bluetooth mod-
ule and electronics to run computations and navigation algo-
rithms onboard. It operates in several programmable modes:

1) Computes navigation parameters real-time and sends
them via Bluetooth to an onboard computer (can be any other
integrated system, data logger or a tablet) 2) Sends real-time
raw data to an onboard computer 3) Records hi-rate raw sensor
data (up to 2 kHz) to an embedded micro-SD card.

Our onboard computer is a MEMS-array IMU with 48
gyro and accelerometer channels (PI-48), with a BT receiving
and sync controller, data storage and WiFi interface. We
can now connect up to four PI-WINS units to one onboard
computer and have all their data in sync with the in-cabin PI-
48 inertial data. All of this data can be used for navigation,
wheel dynamics measurements or road quality monitoring
applications.



II. BACKGROUND AND APPLICATIONS

Current research in vehicle automation is heavily focused on
improving radionavigation systems and applying modern ma-
chine learning techniques for vision-based situational aware-
ness. Systems that rely on external sources of information
(GNSS, LiDar, terrestial) are showing attractive results and
are a natural direction of research in the age of deep learning.
We should not, however, forget the inertial aiding which is
always a good back-up in case of external signal outage. Such
outages are well know in GNSS use, but vision systems may
suffer of similar problems, for example in large open area or
during heavy rain. It should be also noted that more precise
sensing provides better input to machine learning systems, for
example when deciding the correct speed as a function of road
condition.

Our system provides valuable measurements right from the
vehicle’s wheels to the systems mentioned above. The output
of the system can be useful in several ways:

1) for positioning computation - this is the primary topic
of this paper;

2) for wheel dynamic measurements - hi-rate (2kHz) 6DOF
data;

3) for road condition monitoring - direct measurements
unaffected by suspension.

An inertial measurement unit attached to a wheel is evi-
dently in a harsh environment. When compared to a cabin fixed
IMU conditions like vibration, dirt, moisture, snow, varying
temperature due to braking - all need to be taken into account.
In addition, requirement for sensor input range is different.
But such environmental factors are not that severe when
compared to space applications, for instance. Thus, designing
and building IP protected, properly temperature compensated
unit (-40◦...+80◦) is not impossible.

For guiding the system design, our primarily targeted mar-
kets and applications for this technology have been:

• autonomous vehicles;
• construction and mining machines navigation and safety;
• port logistics and warehouse automation vehicles;
• traction control enhancement.

We have ongoing efforts to design and test an energy-
harvester prototype capable of extracting enough energy to
power PI-WINS even in slow vehicle speeds. This will make
our wheel sensor an ”install and forget” solution that goes
to sleep when a vehicle is not moving (motion detection)
and transmits pre-programmed data messages for an onboard
system when motion occurs. Our target design goal is a small
unit behind the manufacturers logo on a wheel rim, self-
generating enough power to operate, and sending valuable
information for in-car safety/navigation systems.

III. DYNAMICS OF WHEEL MOUNTED IMU

We begin by defining wheel-fixed coordinate frame (B)
and vehicle chassis frame (V), sharing a common z-axis as

Fig. 1. Axes definitions for wheel-fixed frame (B) and chassis-fixed frame
(V)

Fig. 2. Heading rate and wheel-mounted gyros

shown in Fig.1. The direction cosine matrix for coordinate
transformation can be then expressed as

CV
B =

 cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 , (1)

where φ denotes wheel phase angle, the amount of rotation
from neutral angle where the frames V and B coincide. Vehicle
heading rate (ωH) and roll rate (ωR) are observed by wheel-
mounted IMU as [21]:

gx = ωH cos(φ) + ωR sin(φ)

gy = −ωH sin(φ) + ωR cos(φ) .
(2)

Heading rate from the in-cabin IMU (gyro X) vs. data from
two gyros in the PI-WINS on the wheel (gx and gy) are shown
in Fig.2. As Eq. 2 shows, the gyro data gy advances the gx.
The direction of turn is not visible in raw data but appears as
unbiased heading rate after coordinate transformation.

Assuming the wheel rotates at a constant speed, φ(t) =
rt, the constant bias will cancel out and the low-frequency
noise significantly decreases [18]. Our tests indicate that the
bias cancellation works well even with an accelerating vehicle,



as acceleration and biases can be observed with an extended
Kalman filter framework.

A. Velocity updates and centripetal acceleration

The required coordinate transformation (CV
B) should be

performed with aid of external angle information that does
not suffer from drift; accelerometers are conveniently avail-
able for this. The accelerometer triad measures specific force
acceleration [22]

aBSF = p̈B − gB, (3)

where p̈B is acceleration in body frame. Assuming it is known
or a noise term n one obtains

aBSF = −gB + n

= CB
L

 −g0
0

+ n.
(4)

Furthermore, assuming the locally level L frame coincides
with the vehicle frame V

1

g
aBSF =

(
CV

B

)T  1
0
0

+ n,

(5)

and thus the first row of CV
B in (1) is observable, and phase

angle φ(t) can be estimated. It should be noted that this is just
one way to approach the filtering problem in wheel-mounted
inertial systems. For example, the wheel contact point can be
assumed stationary and zero-velocity observation can be thus
added in the filter. In this sense the wheel-mounted inertial sys-
tem is another example of applying velocity constraints [23],
[24], with the extra aid of carouseling effect. The unbiased-
ness can also improve the centripetal acceleration estimation.
Assuming Ackermann steering geometry and zero slip angles,
the lateral acceleration can be computed, using [25]

ac = ωH φ̇R (6)

and radius of curvature is

rc =
φ̇R

ωH
. (7)

If heading rate estimates are averaged over full wheel rev-
olution the gyro bias does not affect the lateral acceleration
estimate. The remaining essential errors are due to gyro white
noise, inaccuracy in wheel radius R and inaccuracy in φ̇.
In wheel-mounted INS the accelerometer errors can be also
tackled efficiently when bias, tilt error, and vibration affect
the results much less than in the traditional approaches. Coarse
estimate for the acceleration error due to angular random walk
noise can be obtained by using the Allan deviation specifi-
cation of the gyro at τ = T , and multiplying it by φ̇R. For
low-cost MEMS gyro with noise density 0.023 dps/

√
Hz [26]

and heavy equipment vehicle traveling at 20km/h the resulting
error (1σ) would be approximately 0.11 m/s2.

Fig. 3. Wheel sensor PI-WINS

Fig. 4. PI-WINS on a wheel’s rim

IV. HARDWARE AND DATA FORMAT

The wheel sensor (PI-WINS) is equipped with the In-
vensense ICM-20602 sensor. The sensor board is rigidly
attached to the PI-WINS enclosure limiting negative resonant
effects and proving maximum stability for the sensitivity
axes stability. The sensor board is also thermally detached
from the enclosure to minimize temperature gradients. After
the assembly, PI-WINS is calibrated (axes, biases and scale
factors) and temperature compensated from -40◦C to +80◦C.

The unit uses ARM Cortex-M4 as the main processor. The
radio channel is built on Bluetooth technology using Murata
chip and BLE (Bluetooth Low Energy) protocol. The built-in
Li-pol battery has a capacity of 240 mAh and is enough for
powering the PI-WINS for 10-20 hours, depending on the load
of BLE transmission (mode of operation). There is also a built-
in eMMC 16gB flash memory card for logging hi-rate sensor
data (up to 2 kHz) for specific wheel dynamic measurements.
The logged hi-rate data is accessible via a mini-USB interface
that is IP-68 protected. Current model of PI-WINS is shown in
Fig.3. Example of PI-WINS installation on a car rim is shown
in Fig.4.

In testing we also used a PI-48 MEMS IMU (that we design



Fig. 5. PI-48 MEMS IMU

and manufacture) with an array of 48 gyros and accelerometers
(48xICM-20602). The proper orientation of the sensors in
the array not only lowers the noise and improved the bias
stability, but also reduces overall temperature coefficient and
hysteresis, which, in turn, leads to better units stability after
temperature calibration. The unit is IP-67 protected and has
several interfaces: RS232, RS485 and CAN2.0. The PI-48
MEMS IMU is shown in Fig.5.

A. Data Format

The wheel sensor PI-WINS, as any other inertial sensor,
provides relative navigation solution. PI-WINS provides in-
cremental heading (with respect to some initial value) and
incremental distance traveled, measured in wheel rotation
counts. It is sufficient information to apply a classic Dead
Reckoning (DR) algorithm and compute a 2D navigation
solution. The initial heading, wheel diameter and altitude can
be estimated with GNSS integration or modern map-matching
methods [27]. Currently, PI-WINS operates in 2 modes:

1) Low power mode (real time): all the calculations are
made in the sensor and the real-time delta-heading
and delta-distance are sent via bluetooth to a dedicated
receiver;

2) EKF mode (time lag): raw sensor data is transmitted to
an onboard computer where more computationally heavy
EKF algorithms are run and better navigation solution
is computed.

For the low power mode, the current accuracy specifications
for the unit are:

• Output data packet rate: 10 Hz;
• Interface: USB (with BT dongle);
• Wheel rotation rate: up to 10 full revolutions per second

(600 rpm);
• Wheel heading angle rate: <1000 deg/sec;
• Wheel heading angle error: 1 deg per 1 hour of driving

time.

Fig. 6. Test car with some of the equipment

V. TEST RESULTS

In the testing we used the following equipment:
• PI-WINS wheel sensor
• PI-48 MEMS-array IMU
• NovAtel SPAN with KVH FOG IMU
• uBlox ZED-F9P Rx

Test vehicle with PI-WINS (and the BT dongle) on the wheel
is shown in Fig.6.

As we explained above the most important data from the
wheel sensor PI-WINS is the unbiased heading and precise
wheel rotation count. Let us first demonstrate how well PI-
WINS estimates the vehicle heading compared to SPAN and
ZED-F9P solutions. Fig.7 shows the result of a nearly 15
min drive with speeds of up to 25 km/h. After initial heading
initialization (with F9P), the max error in heading estimation
is around 2.3 deg (RMS).

Fig.8 shows the estimation of vehicle speed by PI-WINS,
SPAN and F9P. Here, we used PI-WINS measurements of
wheel rotation and the known wheel diameter. The error in
speed estimation is 0.23 m/s (RMS).

Fig.9 show the results for this test: 15 min drive, 3.1 km
total distance traveled, 20 km/h max speed. For PI-WINS
computation the final 2D position error is 23 meters. In
comparison, high-accuracy MEMS-array IMU (PI-48) with
odometer input has larger error (112 m). It should be noted
that for PI-48 result the initial bias was removed in the
initialization. This also removes the vertical component of
Earth rate. For the PI-WINS, the Earth rate remains in the
solution (this is not corrected in the results). We expect the
difference to be even larger with filter that is tuned to handle
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Fig. 7. Heading estimation by PI-WINS, SPAN and ZED-F9P
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Fig. 8. Speed estimation by PI-WINS, SPAN and ZED-F9P
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Fig. 10. PI-WINS position estimation

errors distinctive to wheel-mounted INS (modulation of Earth
rate and g-sensitvity). In here the progress in low-cost precise
GNSS receivers should be mentioned, as it is very relevant to
inertial system integration. We have tested new uBlox ZED-
F9P module with PI-WINS and results look very promising.
For example, the real-time solution of this low-cost receiver
was used to estimate the lever arm with standard deviation of
only 1.4 cm. Such advances in new low-cost receivers will
really change the opportunities of dead reckoning systems in
general.

In another shown test, the total driving time is 15 minutes
and max speed is 30 km/h. Fig. 10 shows the results for
this test - initial heading and position are taken from DGPS
solution, the rest is fully inertial 2D navigation solution com-
puted from the PI-WINS wheel data. Here, we show 2 modes
of PI-WINS operation - one is a real time computation by
the PI-WINS itself (low power mode, PI-WINS transmits via
Bluetooth delta-heading and delta-distance traveled at 10Hz)
and the other is a more computationally heavy algorithm
(EKF) that is run on a computer using raw 2kHz data logged
by PI-WINS on its internal storage. The two solutions are
really close in this particular case, but in the longer tests EKF
solution outperforms the simplified real-time solution. It is
possible to embed the EKF algorithm to the ARM processor of
PI-WINS - it will result in a more accurate solution but will
also lead to a shorter battery operation time and inevitable
solution time lag.

When the car enters a parking garage (”parking garage
entry” mark on Fig.10) the reference GNSS/INS solution
actually drifts more than the PI-WINS solution. The maximum
2D position error of PI-WINS is below 10 meters. This test
shows the potential of the system, and we are running an
extensive test campaign with other types of additional sensors
such as Lidars, stereo cameras and precise point positioning
receivers. This campaign will help to reveal the pros and
cons of wheel-mounted systems with different kinds of sensor
setups.

There are many other applications and test scenarios one
may run with wheel PI-WINS sensors, analysis and discus-



sions of which will surely not fit into one paper. For example,
having several PI-WINS sensors on front and rear wheels can
be very useful in detecting wheel slips. Data from 4 PI-WINS
installed on all vehicle wheels can be used to estimate the
radius and center of curvature of the path the car drives at.
PI-WINS’ raw 2kHz inertial data is a perfect information to
analyze wheel dynamics and road conditions. In this paper, we
just scratched the surface and showed rather navigation-related
results - more relevant to the field of expertise of the authors.

VI. CONCLUSIONS

Availability, reliability and integrity of vehicular navigation
technology become more and more critical as autonomous
transport systems enter the market with high volume. To
enable continuous operation, cameras and LiDARs equipped
with modern machine learning algorithms are being coupled
with traditional GNSS and inertial navigation systems. When
considering system tolerance to interference (intentional or
unintentional) inertial sensor based solutions are in their own
class. Thus, improving performance of inertial systems while
keeping the costs at reasonable level is worth studying. In
this article we have shown that inertial measurement unit
mounted to the wheel of a vehicle can be used as a hi-rate
(2 kHz) source of bias-free data for a) vehicle navigation
b) instantanious wheel dynamics estimation (angles, rates,
accelerations) for vehicle stability control c) road quality
measurement systems. As the MEMS biases have no effect in
the result the resolution capabilities at low dynamic conditions
are exceptional. The described method opens potentially new
methods for car stability systems and autonomous driving. We
invite research groups and industry to join us in exploration
of what this technology can bring to vehicular navigation,
monitoring and stability systems in the near future.
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[24] J. Nilsson, I. Skog, and P. Händel, “Performance characterisation of
foot-mounted zupt-aided inss and other related systems,” in 2010 Inter-
national Conference on Indoor Positioning and Indoor Navigation, Sep.
2010, pp. 1–7.

[25] M. Bevly and S. Cobb, GNSS for Vehicle Control. Artech House, 2010.
[26] STMicroelectronics, “L3gd20 mems digital output gyroscope,” 2013.
[27] J. Bojja, M. Kirkko-Jaakkola, J. Collin, and J. Takala, “Indoor

localization methods using dead reckoning and 3d map matching,” J.
Signal Process. Syst., vol. 76, no. 3, pp. 301–312, Sep. 2014. [Online].
Available: http://dx.doi.org/10.1007/s11265-013-0865-9


